发布于 2014-06-29 10:08:09 | 437 次阅读 | 评论: 0 | 来源: 网友投递
这里有新鲜出炉的精品教程,程序狗速度看过来!
Sphinx 全文检索引擎
Sphinx是一个基于SQL的全文检索引擎,可以结合MySQL,PostgreSQL做全文搜索,它可以提供比数据库本身更专业的搜索功能,使得应用程序更容易实现专业化的全文检索。Sphinx特别为一些脚本语言设计搜索API接口,如PHP,Python,Perl,Ruby等,同时为MySQL也设计了一个存储引擎插件。
Sphinx介绍
Sphinx是由一个开源的全文检索引擎,功能类似Lucune,用C++编写,可为其他应用提供高速、低空间占用、高结果相关度的全文搜索功能。 Sphinx可以非常容易的与SQL数据库和脚本语言集成,当前系统内置MySQL和PostgreSQL数据库数据源的支持,也支持从标准输入读取特定 格式的XML数据,通过修改源代码,用户可以自行增加新的数据源(例如:其他类型的DBMS的原生支持)
Sphinx特性
- 1:Sphinx支持高速建立索引(可达10MB/秒,而Lucene建立索引的速度是1.8MB/秒)
2:高性能的搜索(在2--4GB的文本数据上,平均每次检索响应时间小于0.1秒)
3:高扩展性(实测最高可对100GB的文本建立索引,单一索引可包含1亿条记录)
4:提供了优秀的相关度算法,基于短语相似度和统计(BM25)的复合Ranking方法
5:支持分布式搜索
6:支持短语搜索
7:可作为MySQL的存储引擎提供搜索服务
8:支持布尔、短语、词语相似度等多种检索模式
9:文档支持多个全文检索字段
-
工作流程
安装好Sphinx后,首先需要根据想要检索的场景来建立对应的配置文 件,Sphinx是以sphinx.conf为配置文件,索引与搜索均以这个文件为依据进行,要进行全文检索,首先就要配置好sphinx.conf,告 诉sphinx哪些字段需要进行索引,哪些字段需要在where,orderby,groupby中用到。
该文件的结构大致如下:
- <![CDATA[source 源名称1{
- …
- }
- index 索引名称1{
- source=源名称1
- …
- }
- source 源名称2{
- …
- }
- index 索引名称2{
- source = 源名称2
- …
- }
- indexer{
- …
- }
- searchd{
- …
- }
- ]]>
从配置文件的组成中我们可以发现Sphinx可以定义多个索引与数据源,不同的索引与数据源可以应用到不同表或不同应用的全文检索方式。
source
以MySQL为例,示范如何配置全量索引的数据源
- source poi_name
- {
- type = mysql ######数据源类型
-
- sql_host = localhost ######mysql主机
- sql_user = root ######mysql用户名
- sql_pass = ************ ######mysql密码
- sql_db = *** ######mysql数据库名
- sql_port = 3306 ######mysql端口
-
- sql_query_pre = SET NAMES utf8 ###mysql检索编码,特别要注意这点,很多人中文检索不到是数据库的编码是GBK或其他非UTF8
-
- sql_query = \
- SELECT id, poi_name, poi_name as name, branch_name, city_id, district_id, biz_area_id, type_id, level, latitude/1000000 latitude, longitude/1000000 longitude, complain_status, creator_id, create_time, check_status, modify_time, deleted, link_status \
- FROM poi ####### 获取数据的sql,这里可以指定条件查询进行过滤
-
- #####以下是用来过滤或条件查询的属性,这里列出的字段将可以进行条件查询,同时不参与全文检索############
- sql_attr_uint = city_id
- sql_attr_uint = district_id
- sql_attr_uint = biz_area_id
- sql_attr_uint = type_id
- sql_attr_uint = level
- sql_attr_uint = complain_status
- sql_attr_uint = creator_id
- sql_attr_uint = create_time
- sql_attr_uint = check_status
- sql_attr_uint = deleted
- sql_attr_uint = modify_time
- sql_attr_uint = link_status
- sql_attr_float = latitude
- sql_attr_float = longitude
- sql_attr_string = poi_name ####### poi_name字段将不参与全文检索
- }
增量索引的配置与之类似,只不过需要根据增量条件对获取数据进行过滤,这里以时间戳为例(也可以通过对id设置更新记录表等其它方式来设置增量条件)
- source poi_name_incr : poi_name
- {
- sql_query = \
- SELECT id, poi_name, poi_name as name, branch_name, city_id, district_id, biz_area_id, type_id, level, latitude/1000000 latitude, longitude/1000000 longitude, complain_status, creator_id, create_time, check_status, modify_time, deleted, link_status \
- FROM poi where create_time > unix_timestamp() - 360
- ...
- }
实时索引不需要设置数据源,直接在index里配置为rt即可
index
全量索引的index配置如下,这里没有配置采用外置的分词插件如mmseg等
- index poi_name
- {
- source = poi_name #### 声明索引数据源
- path = /opt/***/mtpoi/indexfiles/poi_name #######索引文件存放路径
- docinfo = extern #### 文档信息存储方式
- mlock = 0 #### 缓存数据内存锁定
- morphology = none #### 形态学(对中文无效)
- min_word_len = 1 #### 索引的词最小长度
- charset_type = utf-8 #### 数据编码
- ngram_len = 1 #### 对于非字母型数据的长度切割
- ngram_chars = U+3000..U+2FA1F #加上这个选项,则会对每个中文,英文字词进行分割
- charset_table = 0..9, A..Z->a..z, _, a..z, U+410..U+42F->U+430..U+44F, U+430..U+44F ##### 字符表,如使用这种方式,则Sphinx会对中文进行单字切分
- html_strip = 0
- }
增量索引的index配置与之类似,只是将数据源及path设置为增量索引的即可
- index poi_name_incr
- {
- source = poi_name_incr
- path = /opt/***/mtpoi/indexfiles/poi_name_incr
-
- ....
- }
实时索引由于不需要设置数据源,配置有些不同
- index poi_rt
- {
- type = rt #### 声明为实时索引
- rt_mem_limit = 512M
- path = /opt/***/mtpoi/indexfiles/poi_rt
- charset_type = utf-8
- charset_table = 0..9, A..Z->a..z, _, a..z, U+410..U+42F->U+430..U+44F, U+430..U+44F
- ngram_chars = U+3000..U+2FA1F
-
- #### 实时索引的条件查询字段 ####
- rt_attr_uint = city_id
- rt_attr_uint = district_id
- rt_attr_uint = biz_area_id
- rt_attr_uint = type_id
- rt_attr_uint = level
- rt_attr_uint = complain_status
- rt_attr_uint = creator_id
- rt_attr_uint = create_time
- rt_attr_uint = check_status
- rt_attr_uint = deleted
- rt_attr_uint = modify_time
- rt_attr_uint = link_status
- rt_attr_float = latitude
- rt_attr_float = longitude
- rt_attr_string = poi_name
- #### 参与全文检索的属性 ####
- rt_field = poi_name
- rt_field = branch_name
- }
indexer
indexer的配置比较简单,一般来说不需要改动,配置完毕后执行indexer工具重建索引即可
- # 重建配置里的全部索引,必须关闭searchd
- /usr/local/sphinx-2.1.0/bin/indexer -c /opt/***mtpoi/conf/sphinx.conf.incr --all
- # 重建部分索引(poi_name_incr),可指定多个
- /usr/local/sphinx-2.1.0/bin/indexer -c /opt/***/mtpoi/conf/sphinx.conf.incr poi_name_incr
- # searchd运行过程中更新索引,添加--ratate参数
- /usr/local/sphinx-2.1.0/bin/indexer -c /opt/***/mtpoi/conf/sphinx.conf.incr --rotate poi_name
searchd
searchd的配置项里最主要的是监听端口
- searchd
- {
- listen = 9346 # 监听端口,api访问端口
- listen = 9340:mysql41 # SphinxQL访问端口
- log = /var/sankuai/logs/sphinx_poi_incr/sphinx-searchd.log
- query_log = /var/sankuai/logs/sphinx_poi_incr/sphinx-query.log
- max_matches = 10000 # 最大匹配结果,在某些情况下该数值会导致查询不到结果,比如有设置分页项时想获取1w条之后的记录
- query_log_format = sphinxql # 日志查询格式化,plain为简单文本格式,这里采用sphinxql以获取更丰富的查询信息
- mysql_version_string = 5.5.21 # 返回给通过SphinxQL访问的MySQL版本号,目前采用的mysql-connector-java-5.1.15需要设置该值,否则连接时会报错
- ....
- }
执行indexer建好索引后,直接启动searchd即可启用Sphinx查询服务
/usr/local/sphinx-2.1.0/bin/searchd -c /opt/***/mtpoi/conf/sphinx.conf.incr
然后通过crontab等方式调用indexer来更新索引文件
SphinxQL
Sphinx的searchd守护程序从版本0.9.9-rc2开始支持MySQL二进制网络协议,并且能够通过标准的MySQL API访问
- $ mysql -P 9306
- Welcome to the MySQL monitor. Commands end with ; or \g.
- Your MySQL connection id is 1
- Server version: 0.9.9-dev (r1734)
-
- Type 'help;' or '\h' for help. Type '\c' to clear the buffer.
-
- mysql>
新的访问方法是对原生API的一种补充,原生API仍然可用。事实 上,两种访问方法可以同时使用。另外,原生API仍旧是默认的访问方法。MySQL协议支持需要经过额外的配置才能启用。当然这只需要更动一行配置文件, 加入一个协议为mysql41的监听器(listener)就可以了:
listen = 9340:mysql41 # SphinxQL访问端口
分布式索引
除了实时索引之外,Sphinx还支持一种特殊的索引方式------分布 式索引,分布式检索可以改善查询延迟问题(即缩短查询时间)和提高多服务器、多CPU或多核环境下的吞吐率(即每秒可以完成的查询数)。这对于大量数据 (即十亿级的记录数和TB级的文本量)上的搜索应用来说是很关键的。其关键思想是对数据进行水平分区(HP,Horizontally partition),然后并行处理:
- 1:在不同服务器上设置Sphinx程序集(indexer和searchd)的多个实例
2:让这些实例对数据的不同部分做索引(并检索)
3:在searchd的一些实例上配置一个特殊的分布式索引然后对这个索引进行查询
-
这个特殊索引只包括对其他本地或远程索引的引用,因此不能对它执行重新建立索引的操作,相反,如果要对这个特殊索引进行重建,要重建的是那些被这个索引被引用到的索引。
当searchd收到一个对分布式索引的查询时,它做如下操作:
- 1:连接到远程代理
2:执行查询 :#(在远程代理执行搜索的同时)对本地索引进行查询;
3:接收来自远程代理的搜索结果
4:将所有结果合并,删除重复项
5:将合并后的结果返回给客户端
-
在应用程序看来,普通索引和分布式索引完全没有区别。也就是说,分布式索引对应用程序而言是完全透明的,实际上也无需知道查询使用的索引是分布式 的还是本地的。<br/> 任一个searchd实例可以同时做为主控端(master,对搜索结果做聚合)和从属端(只做本地搜索)。这有如下几点好处:
- 1: 集群中的每台机器都可以做为主控端来搜索整个集群,搜索请求可以在主控端之间获得负载平衡,相当于实现了一种HA(high availability,高可用性),可以应对某个节点失效的情况.
2: 如果在单台多CPU或多核机器上使用,一个做为代理对本机进行搜索的searchd实例就可以利用到全部的CPU或者核
-
这里采用前述配置的几种索引做一个简单的分布式索引配置示例
- index poi_dist
- {
- type = distributed #### 设置为分布式搜索
- local = poi_name #### 设置查询本地全量索引
- local = poi_name_incr #### 设置查询本地增量索引
- local = poi_rt #### 设置查询本地实时索引
- agent = srv24:9340:poi_name #### 也可以通过agent来进行查询远程全量索引
- }
更详细的分布式搜索的相关配置参数比如超时等参考官方文档。
近实时索引实现
在商家数据中心的使用场景中,目前存在一些对实时性要求比较高的检索需求, 比如在CRM系统里,对商家的审核状态进行审核(0->1)后,页面会自动刷新,此时会根据审核状态(1)进行查询,如果实时性不够的话此 时会查询不到该数据,而且使用原状态(0)进行查询的时候,依然能查询到,这就要求目前的Sphinx查询能够尽可能的支持实时检索。
rt
如前面介绍,现有的Sphinx是有实时索引这种类型的,但据一些文章说其在大数据量的情况下性能不太好,另外,其初始时是没有数据的,而现有的数据库里已经有大约100w+的数据需要索引,全部采用rt索引看来不是一个好选择
参考:
全量+增量
结合目前MDC中商家数据的实际情况(新增,更新相对较少),可以采用对稳定数据采用全量索引,对发生更新的数据采用增量索引,然后利用distributed的特性来合并查询
- index poi_dist
- {
- type = distributed #### 设置为分布式搜索
- local = poi_name #### 设置查询本地全量索引
- local = poi_name_incr #### 设置查询本地增量索引
- }
增量索引由于数据量少,每次重建索引时耗时不到1s,可以做到5-10s左右更新一次,然后与全量索引进行merge,把增量索引更新到进来。
- indexer --merge DSTINDEX SRCINDEX --rotate
这种方案依然存在一些问题:
- 1:由于索引合并的间隔问题,如果一条记录被修改了,在还没有执行增量索引合并前,全量索引里依然是修改前的值,而增量索引已更新为修改后的值,这样在通 过distributed来进行查询时合并后的结果集可能并不符合预期(有可能查询到修改前的记录)。对这个问题,可以采用API里提供的 updateAttributes方法来实时更新索引的值,但Java版本的API目前仅支持对int,long类型的属性进行实时更新;当然也可以采用 SphinxQL来进行属性的更新,其依然存在不支持非int,long类型的属性即时更新问题,但由于增量索引可以重建的比较频繁,在索引重建时会将这 些非int,long类型的属性修改进行更新,这样对这些属性的索引大约存在5-10s左右的延迟,对int,long属性的修改可以即时索引进来.
2:由于其不支持即时新增索引项,只能等待增量索引重建时进行更新,所以其对新增记录也存在5-10s左右的延迟
-
全量+rt+SphinxQL
和全量+增量的方式类似,只不过将增量索引换成直接使用rt索引,然后类似 进行merge合并,其好处是可以即时将新增或修改的记录反映到索引中(这里对新增索引必须采用SphinxQL,目前Java版本的API不支持新增索 引记录),但对于非int,long类型的属性修改依然没有什么好办法,只能等待执行索引更新时进行更新,但全量索引的更新相对周期比较长,所以相对延迟 会比较大。
与Lucene的简单对比
- 对Lucene暂时接触不深,简单对比一下:
1: Sphinx建索引速度非常的快;Lucene建索引相比Sphinx要差很多,同样建1000w数据,Sphinx2分钟以内,Lucene10分钟多,不过搜索性能上相差不太大
2: Sphinx的索引结构必须提前预定义好;Lucene的索引结构是比较自由的
3: Sphinx查询中Attribute(属性)的概念,而且Sphinx在启动Searchd的时候会将所有属性加载到内存中;而Lucene则没有,虽 然Lucene也有NumericField,但是底层仍然是作为String处理的。这点可能会导致Sphinx比Lucene查询性能上好一些
4: Lucene用Java,代码阅读上相对容易
其他全文检索引擎
solr,lucene,coreseek(基于sphinx),讯搜等