发布于 2014-10-29 09:38:22 | 3412 次阅读 | 评论: 0 | 来源: 网友投递

这里有新鲜出炉的精品教程,程序狗速度看过来!

SQLAlchemy Python的ORM框架

SQLAlchemy是Python编程语言下的一款开源软件。提供了SQL工具包及对象关系映射(ORM)工具,使用MIT许可证发行。


本文为大家讲解了Python的ORM框架SQLAlchemy基本操作和常用技巧,包含大量实例,非常好的一个学习SQLAlchemy的教程,需要的朋友可以参考下

SQLAlchemy是Python编程语言下的一款开源软件。提供了SQL工具包及对象关系映射(ORM)工具,使用MIT许可证发行。

首先说下,由于最新的 0.8 版还是开发版本,因此我使用的是 0.79 版,API 也许会有些不同。
因为我是搭配 MySQL InnoDB 使用,所以使用其他数据库的也不能完全照搬本文。

接着就从安装开始介绍吧,以 Debian/Ubuntu 为例(请确保有管理员权限):
1.MySQL

apt-get install mysql-server
apt-get install mysql-client
apt-get install libmysqlclient15-dev


2.python-mysqldb

 

apt-get install python-mysqldb


3.easy_install

 

 

wget http://peak.telecommunity.com/dist/ez_setup.py


python ez_setup.py
4.MySQL-Python

 

 

easy_install MySQL-Python


5.SQLAlchemy

 

 

easy_install SQLAlchemy

 

 

如果是用其他操作系统,遇到问题就 Google 一下吧。我是在 Mac OS X 上开发的,途中也遇到些问题,不过当时没记下来……
值得一提的是我用了 MySQL-Python 来连 MySQL,因为不支持异步调用,所以和 Tornado 不是很搭。不过性能其实很好,因此以后再去研究下其他方案吧……

装好后就可以开始使用了:

from sqlalchemy import create_engine
from sqlalchemy.orm import sessionmaker


DB_CONNECT_STRING = 'mysql+mysqldb://root:123@localhost/ooxx?charset=utf8'
engine = create_engine(DB_CONNECT_STRING, echo=True)
DB_Session = sessionmaker(bind=engine)
session = DB_Session()


这里的 DB_CONNECT_STRING 就是连接数据库的路径。“mysql+mysqldb”指定了使用 MySQL-Python 来连接,“root”和“123”分别是用户名和密码,“localhost”是数据库的域名,“ooxx”是使用的数据库名(可省略),“charset”指定了连接时使用的字符集(可省略)。
create_engine() 会返回一个数据库引擎,echo 参数为 True 时,会显示每条执行的 SQL 语句,生产环境下可关闭。
sessionmaker() 会生成一个数据库会话类。这个类的实例可以当成一个数据库连接,它同时还记录了一些查询的数据,并决定什么时候执行 SQL 语句。由于 SQLAlchemy 自己维护了一个数据库连接池(默认 5 个连接),因此初始化一个会话的开销并不大。对 Tornado 而言,可以在 BaseHandler 的 initialize() 里初始化:


class BaseHandler(tornado.web.RequestHandler):
    def initialize(self):
        self.session = models.DB_Session()

 

    def on_finish(self):
        self.session.close()


对其他 Web 服务器来说,可以使用 sqlalchemy.orm.scoped_session,它能保证每个线程获得的 session 对象都是唯一的。不过 Tornado 本身就是单线程的,如果使用了异步方式,就可能会出现问题,因此我并没使用它。

 

 

拿到 session 后,就可以执行 SQL 了:

session.execute('create database abc')
print session.execute('show databases').fetchall()
session.execute('use abc')
# 建 user 表的过程略
print session.execute('select * from user where id = 1').first()
print session.execute('select * from user where id = :id', {'id': 1}).first()


不过这和直接使用 MySQL-Python 没啥区别,所以就不介绍了;我还是喜欢 ORM 的方式,这也是我采用 SQLAlchemy 的唯一原因。

 

于是来定义一个表:

from sqlalchemy import Column
from sqlalchemy.types import CHAR, Integer, String
from sqlalchemy.ext.declarative import declarative_base


BaseModel = declarative_base()

def init_db():
    BaseModel.metadata.create_all(engine)

def drop_db():
    BaseModel.metadata.drop_all(engine)


class User(BaseModel):
    __tablename__ = 'user'

    id = Column(Integer, primary_key=True)
    name = Column(CHAR(30)) # or Column(String(30))

init_db()

 

declarative_base() 创建了一个 BaseModel 类,这个类的子类可以自动与一个表关联。
以 User 类为例,它的 __tablename__ 属性就是数据库中该表的名称,它有 id 和 name 这两个字段,分别为整型和 30 个定长字符。Column 还有一些其他的参数,我就不解释了。
最后,BaseModel.metadata.create_all(engine) 会找到 BaseModel 的所有子类,并在数据库中建立这些表;drop_all() 则是删除这些表。

接着就开始使用这个表吧:

from sqlalchemy import func, or_, not_


user = User(name='a')
session.add(user)
user = User(name='b')
session.add(user)
user = User(name='a')
session.add(user)
user = User()
session.add(user)
session.commit()

query = session.query(User)
print query # 显示SQL 语句
print query.statement # 同上
for user in query: # 遍历时查询
    print user.name
print query.all() # 返回的是一个类似列表的对象
print query.first().name # 记录不存在时,first() 会返回 None
# print query.one().name # 不存在,或有多行记录时会抛出异常
print query.filter(User.id == 2).first().name
print query.get(2).name # 以主键获取,等效于上句
print query.filter('id = 2').first().name # 支持字符串

query2 = session.query(User.name)
print query2.all() # 每行是个元组
print query2.limit(1).all() # 最多返回 1 条记录
print query2.offset(1).all() # 从第 2 条记录开始返回
print query2.order_by(User.name).all()
print query2.order_by('name').all()
print query2.order_by(User.name.desc()).all()
print query2.order_by('name desc').all()
print session.query(User.id).order_by(User.name.desc(), User.id).all()

print query2.filter(User.id == 1).scalar() # 如果有记录,返回第一条记录的第一个元素
print session.query('id').select_from(User).filter('id = 1').scalar()
print query2.filter(User.id > 1, User.name != 'a').scalar() # and
query3 = query2.filter(User.id > 1) # 多次拼接的 filter 也是 and
query3 = query3.filter(User.name != 'a')
print query3.scalar()
print query2.filter(or_(User.id == 1, User.id == 2)).all() # or
print query2.filter(User.id.in_((1, 2))).all() # in

query4 = session.query(User.id)
print query4.filter(User.name == None).scalar()
print query4.filter('name is null').scalar()
print query4.filter(not_(User.name == None)).all() # not
print query4.filter(User.name != None).all()

print query4.count()
print session.query(func.count('*')).select_from(User).scalar()
print session.query(func.count('1')).select_from(User).scalar()
print session.query(func.count(User.id)).scalar()
print session.query(func.count('*')).filter(User.id > 0).scalar() # filter() 中包含 User,因此不需要指定表
print session.query(func.count('*')).filter(User.name == 'a').limit(1).scalar() == 1 # 可以用 limit() 限制 count() 的返回数
print session.query(func.sum(User.id)).scalar()
print session.query(func.now()).scalar() # func 后可以跟任意函数名,只要该数据库支持
print session.query(func.current_timestamp()).scalar()
print session.query(func.md5(User.name)).filter(User.id == 1).scalar()

query.filter(User.id == 1).update({User.name: 'c'})
user = query.get(1)
print user.name

user.name = 'd'
session.flush() # 写数据库,但并不提交
print query.get(1).name

session.delete(user)
session.flush()
print query.get(1)

session.rollback()
print query.get(1).name
query.filter(User.id == 1).delete()
session.commit()
print query.get(1)


增删改查都涉及到了,自己看看输出的 SQL 语句就知道了,于是基础知识就介绍到此了。

 


下面开始介绍一些进阶的知识。

如何批量插入大批数据?

可以使用非 ORM 的方式:

session.execute(
    User.__table__.insert(),
    [{'name': `randint(1, 100)`,'age': randint(1, 100)} for i in xrange(10000)]
)
session.commit()


上面我批量插入了 10000 条记录,半秒内就执行完了;而 ORM 方式会花掉很长时间。

 

如何让执行的 SQL 语句增加前缀?

使用 query 对象的 prefix_with() 方法:

session.query(User.name).prefix_with('HIGH_PRIORITY').all()
session.execute(User.__table__.insert().prefix_with('IGNORE'), {'id': 1, 'name': '1'})

 

如何替换一个已有主键的记录?

使用 session.merge() 方法替代 session.add(),其实就是 SELECT + UPDATE:

user = User(id=1, name='ooxx')
session.merge(user)
session.commit()


或者使用 MySQL 的 INSERT … ON DUPLICATE KEY UPDATE,需要用到 @compiles 装饰器,有点难懂,自己搜索看吧:《SQLAlchemy ON DUPLICATE KEY UPDATE》 和 sqlalchemy_mysql_ext。

 

如何使用无符号整数?

可以使用 MySQL 的方言:

from sqlalchemy.dialects.mysql import INTEGER

 

id = Column(INTEGER(unsigned=True), primary_key=True)

 

模型的属性名需要和表的字段名不一样怎么办?

开发时遇到过一个奇怪的需求,有个其他系统的表里包含了一个“from”字段,这在 Python 里是关键字,于是只能这样处理了:

from_ = Column('from', CHAR(10))

 

如何获取字段的长度?

Column 会生成一个很复杂的对象,想获取长度比较麻烦,这里以 User.name 为例:

User.name.property.columns[0].type.length

 

如何指定使用 InnoDB,以及使用 UTF-8 编码?

最简单的方式就是修改数据库的默认配置。如果非要在代码里指定的话,可以这样:

class User(BaseModel):
    __table_args__ = {
        'mysql_engine': 'InnoDB',
        'mysql_charset': 'utf8'
    }


MySQL 5.5 开始支持存储 4 字节的 UTF-8 编码的字符了,iOS 里自带的 emoji(如

最新网友评论  共有(0)条评论 发布评论 返回顶部

Copyright © 2007-2017 PHPERZ.COM All Rights Reserved   冀ICP备14009818号  版权声明  广告服务