发布于 2015-08-30 07:48:32 | 179 次阅读 | 评论: 0 | 来源: 网络整理
文本清理问题会涉及到包括文本解析与数据处理等一系列问题。
在非常简单的情形下,你可能会选择使用字符串函数(比如 str.upper()
和 str.lower()
)将文本转为标准格式。
使用 str.replace()
或者 re.sub()
的简单替换操作能删除或者改变指定的字符序列。
你同样还可以使用2.9小节的 unicodedata.normalize()
函数将unicode文本标准化。
然后,有时候你可能还想在清理操作上更进一步。比如,你可能想消除整个区间上的字符或者去除变音符。
为了这样做,你可以使用经常会被忽视的 str.translate()
方法。
为了演示,假设你现在有下面这个凌乱的字符串:
>>> s = 'pýtĥöñfistawesomern'
>>> s
'pýtĥöñx0cistawesomern'
>>>
第一步是清理空白字符。为了这样做,先创建一个小的转换表格然后使用 translate()
方法:
>>> remap = {
... ord('t') : ' ',
... ord('f') : ' ',
... ord('r') : None # Deleted
... }
>>> a = s.translate(remap)
>>> a
'pýtĥöñ is awesomen'
>>>
正如你看的那样,空白字符t和f已经被重新映射到一个空格。回车字符r直接被删除。
你可以以这个表格为基础进一步构建更大的表格。比如,让我们删除所有的和音符:
>>> import unicodedata
>>> import sys
>>> cmb_chrs = dict.fromkeys(c for c in range(sys.maxunicode)
... if unicodedata.combining(chr(c)))
...
>>> b = unicodedata.normalize('NFD', a)
>>> b
'pýtĥöñ is awesomen'
>>> b.translate(cmb_chrs)
'python is awesomen'
>>>
上面例子中,通过使用 dict.fromkeys()
方法构造一个字典,每个Unicode和音符作为键,对于的值全部为None。
然后使用 unicodedata.normalize()
将原始输入标准化为分解形式字符。
然后再调用 translate
函数删除所有重音符。
同样的技术也可以被用来删除其他类型的字符(比如控制字符等)。
作为另一个例子,这里构造一个将所有Unicode数字字符映射到对应的ASCII字符上的表格:
>>> digitmap = { c: ord('0') + unicodedata.digit(chr(c))
... for c in range(sys.maxunicode)
... if unicodedata.category(chr(c)) == 'Nd' }
...
>>> len(digitmap)
460
>>> # Arabic digits
>>> x = 'u0661u0662u0663'
>>> x.translate(digitmap)
'123'
>>>
另一种清理文本的技术设计到I/O解码与编码函数。这里的思路是先对文本做一些初步的清理,
然后再结合 encode()
或者 decode()
操作来清除或修改它。比如:
>>> a
'pýtĥöñ is awesomen'
>>> b = unicodedata.normalize('NFD', a)
>>> b.encode('ascii', 'ignore').decode('ascii')
'python is awesomen'
>>>
这里的标准化操作将原来的文本分解为单独的和音符。接下来的ASCII编码/解码只是简单的一下子丢弃掉那些字符。 当然,这种方法仅仅只在最后的目标就是获取到文本对应ACSII表示的时候生效。
文本字符清理一个最主要的问题应该是运行的性能。一般来讲,代码越简单运行越快。
对于简单的替换操作,str.replace()
方法通常是最快的,甚至在你需要多次调用的时候。
比如,为了清理空白字符,你可以这样做:
def clean_spaces(s):
s = s.replace('r', '')
s = s.replace('t', ' ')
s = s.replace('f', ' ')
return s
如果你去测试的话,你就会发现这种方式会比使用 translate()
或者正则表达式要快很多。
另一方面,如果你需要执行任何复杂字符对字符的重新映射或者删除操作的话,tanslate()
方法会非常的快。
从大的方面来讲,对于你的应用程序来说性能是你不得不去自己研究的东西。 不幸的是,我们不可能给你建议一个特定的技术,使它能够适应所有的情况。 因此实际情况中需要你自己去尝试不同的方法并评估它。
尽管这一节集中讨论的是文本,但是类似的技术也可以适用于字节,包括简单的替换,转换和正则表达式。