教程
关于 入门 为了搜索,你懂的 安装Elasticsearch 与Elasticsearch交互 面向文档 开始第一步 检索文档 分析 教程小结 分布式的特性 下一步 集群内部工作方式 空集群 集群健康 添加索引 增加故障转移 横向扩展 继续扩展 应对故障 数据吞吐 什么是文档? 索引一个文档 检索文档 检查文档是否存在 更新整个文档 创建一个新文档 删除文档 处理冲突 文档局部更新 检索多个文档 更省时的批量操作 结语 分布式文档存储 路由文档到分片 主分片和复制分片如何交互 新建、索引和删除文档 检索文档 局部更新文档 多文档模式 为什么是奇怪的格式? 搜索——基本的工具 空搜索 多索引和多类别 分页 简易搜索 映射和分析 映射及分析 确切值(Exact values) vs. 全文文本(Full text) 倒排索引 分析和分析器 映射 复合核心字段类型 结构化查询 请求体查询 结构化查询 Query DSL 查询与过滤 最重要的查询过滤语句 查询与过滤条件的合并 验证查询 结语 排序 相关性排序 多值字段字符串排序 相关性简介 数据字段 分布式搜索的执行方式 查询阶段 取回阶段 搜索选项 扫描和滚屏 索引管理 创建索引 索引设置 配置分析器 自定义分析器 类型和映射 根对象 元数据:_source 字段 元数据:_all 字段 文档 ID 动态映射 自定义动态索引 默认映射 重新索引数据 索引别名和零停机时间 入门 使文本可以被搜索 动态索引 近实时搜索 持久化变更 合并段 结构化搜索 查找准确值 组合过滤 查询多个准确值 包含,而不是相等 范围 处理 Null 值 关于缓存 过滤顺序 地理坐标点 地理坐标点 通过地理坐标点过滤 地理坐标盒模型过滤器 地理距离过滤器 缓存地理位置过滤器 减少内存占用 按距离排序 Geohashes Geohashes Geohashes 映射 geohash单元过滤器 地理位置聚合 地理位置聚合 按距离聚合 geohash单元聚合器 范围(边界)聚合器 地理形状 地理形状 映射地理形状 索引地理形状 查询地理形状 在查询中使用已索引的形状 地理形状的过滤与缓存 嵌套 嵌套-对象 嵌套-映射 嵌套-查询 嵌套排序 嵌套-集合

发布于 2016-02-29 14:37:41 | 352 次阅读 | 评论: 0 | 来源: 网络整理

按距离聚合

按距离聚合对于类似“找出距我1公里内的所有pizza店”这样的检索场景很适合。 检索结果需要确实地只返回距离用户1km内的文档,不过我们可以再加上一个“1-2km内的结果集”:


GET /attractions/restaurant/_search
{
  "query": {
    "filtered": {
      "query": {
        "match": { <1>
          "name": "pizza"
        }
      },
      "filter": {
        "geo_bounding_box": {
          "location": { <2>
            "top_left": {
              "lat":  40,8,
              "lon": -74.1
            },
            "bottom_right": {
              "lat":  40.4,
              "lon": -73.7
            }
          }
        }
      }
    }
  },
  "aggs": {
    "per_ring": {
      "geo_distance": { <3>
        "field":    "location",
        "unit":     "km",
        "origin": {
          "lat":    40.712,
          "lon":   -73.988
        },
        "ranges": [
          { "from": 0, "to": 1 },
          { "from": 1, "to": 2 }
        ]
      }
    }
  },
  "post_filter": { <4>
    "geo_distance": {
      "distance":   "1km",
      "location": {
        "lat":      40.712,
        "lon":     -73.988
      }
    }
  }
}
  • 主查询查找饭店名中包含了 “pizza” 的文档。
  • 矩形框过滤器让结果集缩小到纽约区域。
  • 距离聚合器计算距用户1km和1km-2km的结果数。
  • 最后,后置过滤器(`post_filter`)再把结果缩小到距离用户1km的饭店。

上例请求的返回结果如下:


"hits": {
  "total":     1,
  "max_score": 0.15342641,
  "hits": [ <1>
     {
        "_index": "attractions",
        "_type":  "restaurant",
        "_id":    "3",
        "_score": 0.15342641,
        "_source": {
           "name": "Mini Munchies Pizza",
           "location": [
              -73.983,
              40.719
           ]
        }
     }
  ]
},
"aggregations": {
  "per_ring": { <2>
     "buckets": [
        {
           "key":       "*-1.0",
           "from":      0,
           "to":        1,
           "doc_count": 1
        },
        {
           "key":       "1.0-2.0",
           "from":      1,
           "to":        2,
           "doc_count": 1
        }
     ]
  }
}
  • 后置过滤器(`post_filter`)已经结果集缩小到满足“距离用户1km”条件下的唯一一个pizza店。
  • 聚合器包含了"距离用户2km"的pizza店的检索结果。

这个例子中,我们统计了落到各个环形区域中的饭店数。 当然,我们也可以使用子聚合器再在每个环形区域中进一步计算它们的平均价格,最流行,等等。

最新网友评论  共有(0)条评论 发布评论 返回顶部

Copyright © 2007-2017 PHPERZ.COM All Rights Reserved   冀ICP备14009818号  版权声明  广告服务